

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

PHYSICAL SCIENCE

0652/41

Paper 4 Theory (Extended)

October/November 2022

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 A ball of mass 84 g is dropped from the top of a high building.

The graph in Fig. 1.1 shows the speed of the ball as it falls.

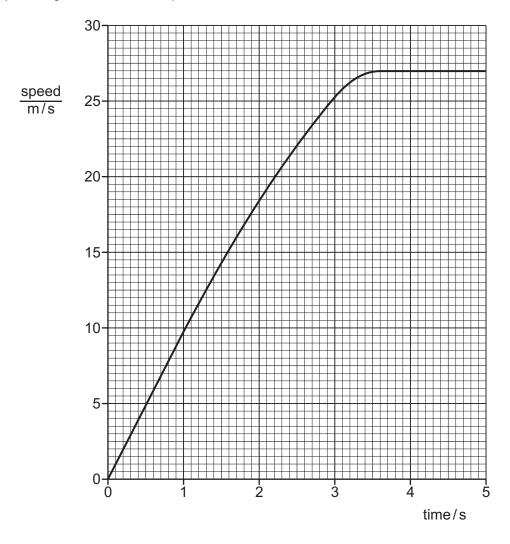


Fig. 1.1

(a) (i) Use the graph to determine the maximum speed of the ball.

maximum speed = m/s [1]

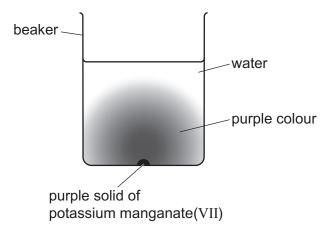
(ii) State the resultant force on the ball when it is falling at its maximum speed.

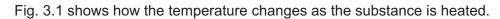
force = N [1]

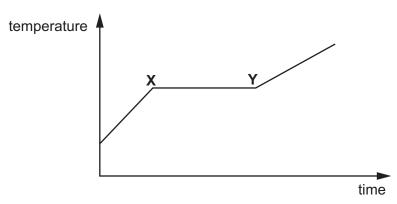
(b)	(i)	Calculate the kinetic energy of the ball when it is falling at its maximum speed.
		Show your working.
		kinetic energy = J [3]
	(ii)	The ball hits the ground and bounces.
		The speed of the ball just after it hits the ground is less than its speed just before it hits the ground.
		Suggest what happens to the kinetic energy that is lost.
		[1]
		[Total: 6]

 $\mbox{\bf 2} \qquad \mbox{\bf (a)} \quad \mbox{Potassium manganate}(\mbox{VII}), \mbox{ KMnO}_4, \mbox{ is a purple coloured solid}.$

It dissolves in water and the purple colour slowly spreads out, as shown in Fig. 2.1.




Fig. 2.1


State the name of the process by which particles spread out.

		[1]
	(ii)	Explain why the process of particles spreading out occurs more slowly in liquids than in gases.
		[1]
(b)	Dete	ermine the relative molecular mass of KMnO ₄ .
	[A _r :	O, 16; K, 39; Mn, 55]
		molecular mass =[1]

[Total: 3]

3 A beaker containing a crushed solid substance is heated at a steady rate.

	Fig. 3.1	
(a)	The temperature of the substance remains constant between X and Y .	
	Suggest a reason.	
		[1]
(b)	The substance is heated for a further period of time. It evaporates and then starts to boil.	
	State one similarity and two differences between evaporation and boiling.	
	similarity	
	difference 1	
	difference 2	
		[3]
(c)	The thermometer in this experiment has a large range but a low sensitivity.	
	Explain what is meant by each of the terms:	
	(i) range	
		[1]
	(ii) sensitivity	
		[1]

4 Food colours are coloured compounds added to food or drinks to improve their appearance.

A student uses chromatography to find out the types of food colours that are in a soft drink.

(a) Fig. 4.1 shows the chromatogram of the student's results.

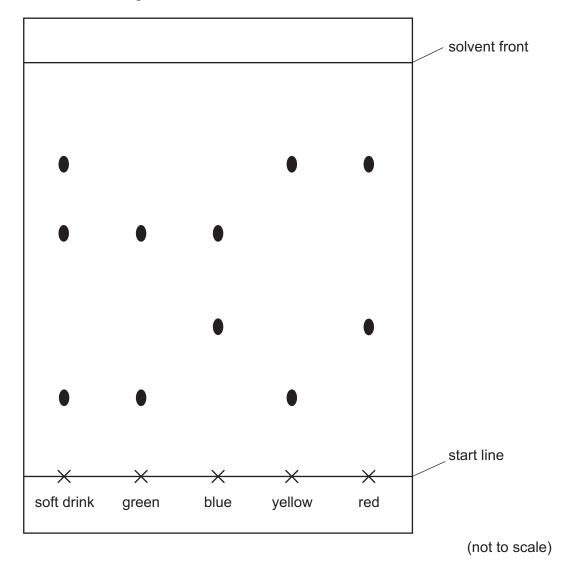


Fig. 4.1

Circle all the food colours that are in the soft drink.

green blue yellow red [1]

(b) The chromatogram for the soft drink is shown in Fig. 4.2.

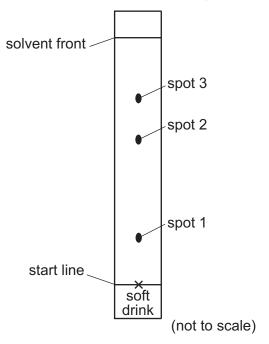


Fig. 4.2

The student labels the spots and measures the distance from the start line to the centre of each spot.

Table 4.1 shows these results.

Table 4.1

distance from start line/cm						
spot 1	spot 2	spot 3	solvent front	top edge of paper		
3.5	6.4	8.3	12.0	15.0		

Calculate the $R_{\rm f}$ value for spot 2 using the information in Table 4.1.

Show your working.

D -	ro	٦
$\Gamma_{\rm f}$ –	 14	ı

(c) Explain why crystallisation is **not** a suitable method for separating the different coloured compounds in the soft drink.

[Total: 4]

5 Table 5.1 shows information about some compounds.

Table 5.1

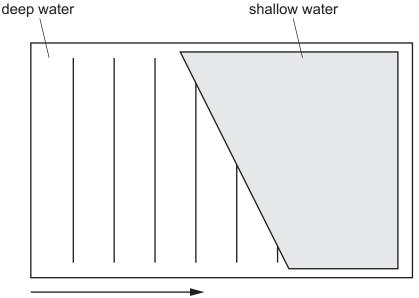
compound	molecular formula	structure
ethene	C ₂ H ₄	H H
propene	C ₃ H ₆	H H H-C-C=C H H H
butene	C ₄ H ₈	H H H H
pentene	C ₅ H ₁₀	H H H H

(i)	Nonene, C_9H_{18} , is in the same family of compounds as the compounds in Table 5.1.	
	State \mathbf{two} ways in which $\mathrm{C_9H_{18}}$ will be similar to the other compounds in Table 5.1.	
	1	
	2	
		<u>2</u>]
(ii)	State the family of compounds to which the compounds in Table 5.1 belong.	
	[´	1]
(iii)	Explain how the information in Table 5.1 shows that these compounds are unsaturated.	
	r.	4 7

© UCLES 2022 0652/41/O/N/22

(a)

- (b) Ethene reacts with bromine.
 - (i) Draw the structure of the product of the reaction of ethene with bromine in the box.


(ii) State the name of this type of reaction.

.....[1

[Total: 7]

[2]

6 Fig. 6.1 shows wavefronts in a tank of water.

direction of travel of the wavefronts

Fig. 6.1

- (a) Complete Fig. 6.1, to show **three** wavefronts as the wave travels through the shallow water. [3]
- **(b)** The speed of the wave in the deep water is 24 cm/s. The distance between successive wavefronts is 5.0 cm.

Calculate the frequency of the wave.

Show your working and give the unit.

frequency = unit [3]

(c) The speed of the wave in the shallow water is 18 cm/s.

By comparing the speeds of the wave in shallow and deep water, calculate the refractive index, n, at the boundary between the deep and shallow water.

n =[2]

[Total: 8]

7 Fig. 7.1 shows a circuit diagram. The power supply has an e.m.f. of 9.0 V.

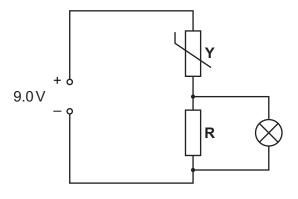


Fig. 7.1

The potential difference across the lamp is 0.50 V and the power is 0.45 W.

(a) (i) Calculate the current through the lamp.

		current = A [2	2]
	(ii)	Calculate the charge passing through the lamp in 5 minutes.	
		charge = C [2	2]
	(iii)	Identify the component labelled Y.	
		[1]
	(iv)	Determine the potential difference across component Y.	
		potential difference =V [11
/I_ \	\		. 1
(b)	VVII	en the temperature of the surroundings increases, the lamp shines more brightly.	
	Exp	plain why this happens.	
			٠.
			٠.

.....[3]

Ω	The equation for	or the extraction	of lead Ph	from its ora PhS	, takes place in two s	aanet
U	THE Eduation it	<i>.</i>	UI ICau. I D.		. lanco biace ili livo o	lauts.

(a) Stage one of the extraction of Pb uses oxygen.

The equation for stage one is shown.

$$2 \, \mathsf{PbS}(\mathsf{s}) \ + \ 3 \, \mathsf{O}_2(\mathsf{g}) \ \longrightarrow \ 2 \, \mathsf{PbO}(\mathsf{s}) \ + \ 2 \, \mathsf{SO}_2(\mathsf{g})$$

(i) Calculate the mass of PbO that is produced from 7.0 tonnes of PbS.

1 tonne = 1000 kg

[A_r: Pb, 207; S, 32; O, 16]

Show your working in the box.

mass of PbO tonnes

[3]

(ii) Sulfur dioxide, SO₂, is a pollutant gas, which is released into the atmosphere during the combustion of fossil fuels.

State one adverse effect of sulfur dioxide gas on the environment.

.....

	(iii)	Describe how emissions of sulfur dioxide from fossil fuels can be reduced.	
			[2]
(b)	Sta	ge two of the extraction of Pb uses carbon.	
	The	e equation for stage two is shown.	
		$2PbO(s) + C(s) \rightarrow 2Pb(l) + CO_2(g)$	
	Sta	te which substance is reduced during this reaction.	
			[1]
(c)	Lea	ad is sometimes alloyed with other metals.	
	Sta	te why alloys are sometimes used instead of pure metals.	
			[1]
(d)	Iron	n is a metal that rusts.	
	(i)	Describe how sacrificial protection helps prevent rusting of iron.	
			[3]
	(ii)	State one other method of rust prevention.	
			[1]
			[Total: 12]

9

(a) The	e isotope ${}^{14}_{6}\text{C}$ is formed in the upper atmosphere.	
(i)	Explain what is meant by isotope.	
		[2]
(ii)	State the number of neutrons and protons in a nucleus of $^{14}_{\ 6}\mathrm{C}.$	
	number of neutrons	
	number of protons	[1]
(b) ¹⁴ ₆ C	C decays by the emission of a β -particle.	
Cor	mplete the equation to show this decay.	
	${}^{14}_{6}C \longrightarrow \mathbb{Z} N + \mathbb{Z} \beta$	[2]

[Total: 5]

10 (a) A student investigates the electrolysis of molten calcium chloride, $CaCl_2$.

Fig. 10.1 shows the apparatus used by the student.

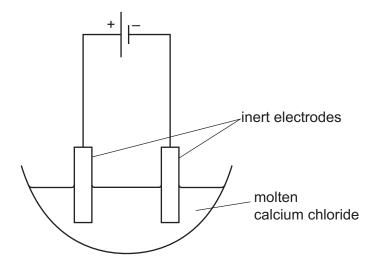


Fig. 10.1

	119. 10.1
(i)	The student uses inert electrodes.
	Explain why the electrodes should be inert.
	[1
(ii)	Predict the products formed at each electrode during the electrolysis of molter calcium chloride, ${\rm CaC} l_2$.
	positive anode
	negative cathode
	[2

(b)	Calcium chloride, ${\rm CaC} l_2$, is an ionic compound.
	Draw the dot-and-cross diagram to represent the ionic bonding in calcium chloride.
	You only need to show the outer electrons.

(c) Calcium is in Group II of the Periodic Table.

Fig. 10.2 shows the elements in Group II of the Periodic Table.

1	4	Γ
	Ве	
	beryllium	
	9	L
	12	l
	Mg	
	magnesium	
	24	L
	20	
	Ca	
	calcium	
	40	L
	38	
	Sr	
	strontium	
	88	L
	56	Γ
	Ba	
	barium	
	137	L

Fig. 10.2

Calcium and barium both react quickly with cold water. Magnesium only reacts slowly with hot water.

Predict the reaction of beryllium, Be, with cold water.	
Explain your answer.	
	•••
	[3]

[Total: 9]

11 Fig. 11.1 shows α -particles approaching an electric field.

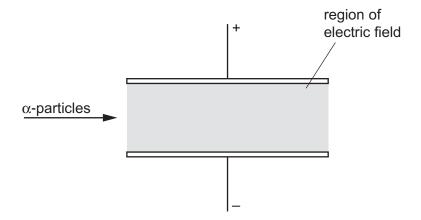


Fig. 11.1

(a)	Ехр	lain what is meant by an electric field.	
			 [1]
(b)	The	electric field is uniform.	
	(i)	On Fig. 11.1, draw the path of an α -particle as it passes through the electric field.	[1]
	(ii)	An electron with a similar speed to the $\alpha\mbox{-particle}$ passes through the same field.	
		State two ways in which the path of the electron is different from the path of the α -partic	cle.
		1	
		2	 [2]
(c)	(i)	State the name of one device that uses α -particles.	
			[1]
	(ii)	Describe how α -particles are used in this device.	
			[1]
		[Total	: 6]

12 When calcium carbonate is heated strongly it produces calcium oxide and carbon dioxide. This reaction is endothermic.

The word equation for this reaction is shown.

calcium carbonate → calcium oxide + carbon dioxide

(a) State the name of this type of endothermic reaction.

r	. 4
	1

(b) Calcium oxide is a base.

State what is meant by the term base, in terms of proton transfer.

- (c) On Fig. 12.1:
 - draw the energy level diagram for this endothermic reaction
 - label the reactants and label the products
 - use an arrow to show the direction of energy change.

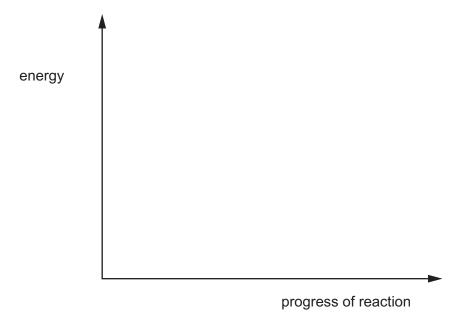


Fig. 12.1

[3]

[Total: 5]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	=	5	e H	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	첫	krypton 84	54	Xe	xenon 131	98	R	radon _			
	₹				6	щ	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	н	iodine 127	85	Αt	astatine -			
	>				80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ро	polonium –	116		livermorium -
	>				7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	≥				9	ပ	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	ŀΙ	flerovium -
	=				2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
											30	Zu	zinc 65	48	පි	cadmium 112	80	БĤ	mercury 201	112	ပ်	copernicium
											29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium
Group											28	z	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
Gro											27	ပိ	cobalt 59	45	몺	rhodium 103	77	Ir	iridium 192	109	M	meitnerium -
		-]	I.	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium
					,						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
						pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>Б</u>	tantalum 181	105	Ор	dubnium
						ato	rela				22	j	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	Ϋ́	rutherfordium -
											21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium
	_				3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	S S	rubidium 85	22	Cs	caesium 133	87	Ŧ	francium

71	ŋ	lutetium	175	103	۲	lawrencium	I
70	Υb	ytterbium	173	102	Š	nobelium	ı
69	Tm	thulium	169	101	Md	mendelevium	I
89	Ē	erbinm	167	100	Fm	ferminm	I
29	웃	holmium	165	66	Es	einsteinium	I
99	۵	dysprosium	163	86	Ç	californium	I
99	Д	terbium	159	26	益	berkelium	ı
64	Вd	gadolinium	157	96	Cm	curium	ı
63	En	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pn	plutonium	ı
61	Pm	promethium	ı	93	dN	neptunium	ı
09	PΝ	neodymium	144	92	\supset	uranium	238
59	Ā	praseodymium	141	91	Ра	protactinium	231
58	Ce	cerium	140	06	Ч	thorium	232
22	Га	lanthanum	139	68	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).